
Issues in Management of Artificial 
Intelligence Based Projects 

P. A. Kiss Dr. Michael S. Freeman 
The  BDM Corporat ion Sys tems Eng inee r ing  Divis ion 
950 Explorer  Boulevard Systems Analysis a n d  
Huntsville, AL 35806 I n t e g r a t i o n  L a b  o r a t o r y  

Marshal l  Space Flight Center  AL 

1.0 A b s t r a c t  

Now that AI is gaining acceptance, it is important to examine some of the 
obstacles that still stand in the way of its progress. Ironically, many of these 
obstacles are related to management and are aggravated by the very characteristics 
that make AI useful. The purpose of this paper is to heighten awareness of 
management issues in AI development and to focus attention on their resolution. 

2.0 I n t r o d u c t i o n  

For the purpose of this paper, the emphasis is on the subset of AI known as 
Knowledge Based Systems (KBS). However, much of the discussion can be 
extrapolated to other areas of Artificial Intelligence (AI) with minor modifications. 
In order to discuss the future needs of AI technology, it is useful to look at the 
present state of the art and some trends that have emerged. Over the past few years, a 
great abundance of small prototype KBSs have been built. These have been 
developed, using various Knowledge Engineering tools, to solve limited domain 
problems with reasonable success. However, larger systems that are tackling full 
scale customer problems have been much slower in coming. This has created a wait 
and see attitude toward the use of KBS in many customers minds. 

Those organizations that are in the forefront of technology and have been 
developing KB systems, are looking more and more at integrating KBS into the 
mainstream of computing technology as opposed to stand-alone environments. Thus, 
an emphasis on total system approaches are emerging. System engineering 
approaches traditionally look at such things as: l ife cycle management, 
documentation, quality, testing, and cost among others. These trends lead to the 
conclusion that rigorous methodologies are needed for AI development and 
integration. It is the issues that arise from the desire to apply rigorous methodologies 
to AI that the rest of this paper is focused on. 

3.0 D i s c u s s i o n  

There are a number of perspectives of AI that can be examined. One is the 
view of the AI technologist. This view sees AI as a leading edge technology to be 
explored as a solution to every problem and developed as an art form. Then there is 
the view of the old style engineer that rejects AI as a bag of risky tricks. Perhaps the 
most important view is that of the end customers. They are looking for the solutions 
to problems at the best overall price. Since the customer is the person paying for the 
work, system engineers should have their needs in mind when designing and 
developing systems to solve problems. Let us examine the implications of this last 
perspec t ive .  

59 



Although tremendous strides have been made by micro computers, most 
organizations use mini and main frame computers for the bulk of their 
computational problems. These environments typically include in excess of 100,000 
lines of software ( S / W )  code, data bases along with their management systems 
running in an integrated fashion. Whether being added to or being designed and 
developed from the ground up, it is these environments that must be considered 
when looking at the use of AI to solve a significant customer problem. From this 
perspective, KBS is  another piece of S/W that should run on (or with) 
existing/planned hardware and be integrated with the other functions of the 
environments. Accepting this premise, let us proceed by examining how KBS 
development might fit into the mainstream of S/W engineering and what the 
ramifications might be. 

3.1 TvDical So ftware Deve lopment Process . Perhaps the most rigorous S/W 
development methodology is the one developed for Department of Defense programs 
in the form of DOD Standard 2167A. Most other S / W  development life cycles can be 
extracted as a variation or subset of the DOD one. Figure 3-1 shows a typical S/W 
development life cycle. Since it is familiar to most, only the briefest description of 
the phases is given here. 

In the Concept Definition phase, the basic ideas for the systems are developed 
through studies and trade analyses. Here the requirements are developed and 
documented in the form of top-level system design specifications and operational 
concepts. These requirements may be allocated to major system components. 

In the Preliminary Design phase, the Design Specifications is finalized and a 
preliminary design is generated. Here the generation of interface and data base 
specifications takes place along with the development and validation of critical 
methods (such as algorithms), and test planning. All of which is presented at a 
Preliminary Design Reviews (PDR). 

In the Detailed Design phase, the system is finalized in terms of Detailed 
Specifications, interfaces, and data base specifications. System test plans are 
developed along with operations manuals, and prototype testing and simulation takes 
place. This phase culminates in a Critical Design Review (CDR). The Development 
phase consists of coding the software according to the designs and specifications. 
During this phase, detailed test procedures are also developed. The Formal Test phase 
consists of a hierarchy of test and validation activities. These incrementally test and 
integrate the system prior to final acceptance and delivery. In the Maintenance 
phase, the system is kept running properly with occasional corrections and updates 
as necessary. 

3.2 Idealized K BS Development. Most KBS have been developed on a seat of the 
pants basis. The methodology applied was greatly dependent on the particular 
building tool being used and on the background of the developers. Presented below 
is a more formal and somewhat idealized KBS development cycle. 

Being with a Problem Identification phase that analyzes the problems and 
determines which portions are applicable to a KBS solution. In this phase, basic 
concepts and approaches are developed for the appropriate domains along with a 
development plan. The key participants and their roles are identified and a cost and 
benefits analyses the effort is performed. 

Next, the Prototype phase develops a full understanding of the domain and task 
via the building of an initial capability. This prototype is used to develop a detailed 
design along with performance criteria, test cases, and selection of the tools and 
target environment. During the Development phase, the prototype is expanded to its 
full functionality. The user interface is developed and it is converted to fit the target 

60 



Figure 3-1. Standard Software Development Life Cycle 

DCR 

PDR 
C o n c e p t  

D e f i n i t i o n  
CDR 

P r e l i m .  
D e s i g n  

TRR D e t a i l e d  
D e s i g n  A c c e p t a n c e /  

D e v e l o p m e n t  

T e s t  

M a i n t e n a n c e  

Figure 3-2. 
Standard 

DCR 
n 

Integrated KBS Development in the 
Software Development Life Cycle 

I D e s i g n  

P r o b l e m  
I d e n t i f i c a t i o n  

CDR 

c e /  
Y 

I- P r o  t o  t y p  i n g  

I D e v e l o p m e n t  

T e s t  I 
M a i n t e n a n c e  I 

A c c e p't a n c e / 

T e s t  I i 

M a i n t e n a n c e  

1 

61 



environment. In the Evaluation phase, the system is tested against agreed upon 
criteria and is operated by experts against new scenarios. Here, if necessary, 
interfaces to other systems and data bases can take place and system performance 
can be enhanced before final delivery, documentation and training. In the 
Maintenance Phase, the system is corrected and updated as necessary for optimal 
opera t ions .  

3.3 ~. In In order to gain full benefits from the Idealized 
KBS methodology above, it needs to be integrated into a typical S / W  development life 
cycle. Figure 3-2 shows how the two may be overlayed in an integrated development 
that contained a KBS component imbedded in a larger S/W system. 

This proposed combination naturally imposes some of methodology rigor of the 
standard S / W  development cycle onto that of the KBS components. That in turn leads 
to the examination and discussion of weaknesses that exist today in the management 
of Knowledge Based Systems. 

3 .4  Areas to  De velop. By systematically examining each phase of a KBS 
development cycle, and comparing it to the corresponding standard S / W  life cycle 
phase, areas needing development come to light. A top-level cut has been done, and 
below are some of the areas ripe for further attention and development. 

Beginning with the problem Identification phase (in Concept Definition), the 
first question should be "what are proper applications for KBS solutions?" This is not 
a trivial question since many problems can be solved by classical methods better 
than by Knowledge Based ones. Although many simple tests of applicability exist, 
there are few in depth methodologies widely accepted. It is suggested that such a 
methodology (exemplified in Figure 3-3) can be developed by assessing: problem 
characteristics, future role of the subsystem, design characteristics, organization 
values and impacts, required performance, and operational environments, to name 
the major areas. Decision trees can be put together by decomposing the above areas 
to lower levels and adding weights to them as appropriate. Once the methodology is 
fully developed, it can be calibrated by running it against existing KBS and their 
associated successes in the field. 

In conjunction with the technology selection, process should be a costbenefit 
analysis. This might be based on such things as the benefits of replicating an expert, 
or the savings compared to solving the problem via a different approach. More 
specifically, the key cost areas for developing a KBS are; knowledge engineering 
time, domain expert's time, users' time, design, development, and test for prototype 
and delivered KBS, hardware, and management. The benefits may include; increased 
productivity, new services or products, elimination of systems or procedures, 
improvements in quality, fewer or less qualified staff needs, and increase in 
equipment life. The above factors need to be quantified for each system and traded 
against each other. 

For the sake of this discussion, let us consider a medical advisor application. 
Such applications are widely accepted as appropriate for a knowledge based system, 
as opposed to standard software. For this reason, we can expect that any costbenefit 
assessment will be favorable. 

The next hurdle during Concept Definition (early prototyping) is to  
characterize the requirements/specifications. One method, shown in Figure 3-4, is to 
capture the functional requirements and decompose them as far as practical. Once a 
decomposition exists, the relationships between functions can be developed. This 
process is important because it will highlight the boundaries to the applicability of 
of KBS solutions. Taking the perspective that some parts of a problem can be straight- 
forward and solvable by conventional methods may reduce the complexity of the KBS 

62 



Figure 3-3. Selection Methodology for KBS Applications 

Problem / 

S e l e c t i o n  

D e s i g n  ' V a l u e s / \  

D e c i s i o n  

S t a n d -  
A l o n e  

Language Hardware 

0 - 5 0 Non-KBS Application 

4 0 - 8 0  Marginal  

7 0 - 1 0 0 KBS Application 

:e  
Operat iona l  

Envmt. 

D 

63 



rn a 
l4 
Q 

L 
0 cr 

e 
0 .- 
.I 
Y 

v) 
0 a 
0 u 
E 

z - 
Q 
e 
0 

u 
e 
1 
R 

.I * 

W 
I 

2 
Q 
rn 

n' 
m 
W 
L 
1 
pa 

kl 
.I 

6 4  

U 



components. One example is the "Determine Anomalies" function in Figure 3-4. This 
may be accomplished by a conventional database-driven limit checking program. 
Another example is the area of scheduling problems. Some solutions can be broken 
up into heuristic and algorithmic components. In addition to  functional 
specifications, performance specifications should be developed for KBS. These a re 
important since they affect the hardware and software selections made for the 
systems. The most important performance characteristics can be along the lines of 
quality, quantity, speed, or interfaces. In the medical advisor example, quality can be 
specified in terms of the percentage of correct diagnoses and/or recommendations. 
Quantity o r  speed can be assessed in terms of how quickly (once the required input 
data is provided) a diagnosis o r  recommendation can be completed. Finally, the 
interfaces should be specified in terms of the user's needs and the delivery 
environment. In this case a doctor may be the user, with an interactive interface as 
well as access to a database of patient history information, and traditional software to 
perform initial anomaly screening. 

As the development of a system moves through the design phases, much 
emphasis is placed on documentation and reviews. In the case of KBS, documentation 
standards and review milestones are not well defined. The establishment of 
Preliminary and Critical Design Review (PDR, CDR) milestones for KBS should be 
considered an important part of system management. They are valuable for the 
developers to work toward, and for the customers/reviewers to understand the 
product being developed and gain confidence in its capability. 

At PDR the knowledge gained from prototyping should be presented as i t  
relates to the full KBS. The detailed functionality and performance requirements of 
the KBS should be documented. Some possibilities for the documentation are: 
functional decompositions, logic networks, decision flows, interface diagrams, and 
operational concept descriptions. Naturally, some of the KBS development tool outputs 
can be used for documentation, but most are usually more appropriate for a CDR level 
review. At CDR, the focus should be on the full integrated system. The knowledge base 
should be complete and captured by the development tool. Text level documentation 
should be provided describing interfaces between the KBS and other system 
components. Full screen level user interfaces should be defined and presented. There 
is a considerable amount of work still to be done in the area of KBS documentation 
s tandards.  

A final area to be addressed here is that of testing and validation of KBS. This is 
perhaps their most important and also weakest area from the perspective of 
traditional operational systems. It is important because operational systems need to 
be trusted by users. Failure of a $300M dollar satellite, the life support system of a 
space vehicle, or your doctor's diagnostic advisor is likely to be viewed by users as 
not merely undesirable, but catastrophic. If a KBS is to be a key component of 
successful operation, then users will demand a high degree of confidence in their 
reliability. The AI community is  of several opinions with regard to methods for 
testing KBS, ranging from the position that testing KBS is  no different from testing 
any other software system, to a belief that KBS are so different that present methods 
cannot be applied to them. Nevertheless, major KBS have been built and put into 
operation successfully using variants of traditional; methods. Development of a 
reliable methodology for verification and validation of KBS must still be considered a 
high priority issue from the management perspective. 

Some approaches can be outlined for achieving the required level of 
reliability in KBS. One is to explore the use of multiple concurrent KBS to provide 
redundancy in critical applications. This can be done through the use of multiple 
copies of the KBS in a voting arrangement, such as is used with traditional software 
systems in the shuttle today. Another is to develop multiple KBS addressing the same 
application, but drawing on different knowledge sources to cross validate each other. 

65 



A third approach is to develop the same KBS using different development tools. This 
latter approach is more cost effective than the second because knowledge acquisition 
(typically the most costly activity in KBS development) is done only once. 

4.0 C o n c l u s i o n  

There are other areas of the software development life cycle which give rise to 
problems when applied to KBS. As the technology matures, and the issues discussed 
here are resolved, other issues will become more important. However, progress 
toward resolution of these issues, and development of a methodology for building 
KBS, will be crucial in gaining the support by management required for KBS 
technology to be integrated with traditional systems in operational environments. 

66 


